The idic(X)(q13) in myeloid malignancies: breakpoint clustering in segmental duplications and association with TET2 mutations.

نویسندگان

  • Kajsa Paulsson
  • Claudia Haferlach
  • Christa Fonatsch
  • Anne Hagemeijer
  • Mette Klarskov Andersen
  • Marilyn L Slovak
  • Bertil Johansson
چکیده

Myelodysplastic syndromes and acute myeloid leukemia with an isodicentric X chromosome [idic(X)(q13)] occur in elderly women and frequently display ringed sideroblasts. Because of the rarity of idic(X)(q13), little is known about its formation, whether a fusion gene is generated, and patterns of additional aberrations. We here present an SNP array study of 14 idic(X)-positive myeloid malignancies, collected through an international collaborative effort. The breakpoints clustered in two regions of segmental duplications and were not in a gene, making dosage effects from the concurrent gain of Xpter-q13 and loss of Xq13-qter, rather than a fusion gene, the most likely pathogenetic outcome. Methylation analysis revealed involvement of the inactive X chromosomes in five cases and of the active in two. The ABCB7 gene, mutated in X-linked sideroblastic anemia and spinocerebellar ataxia, is in the deleted region, suggesting that loss of this gene underlies the frequent presence of ringed sideroblasts. Additional genetic abnormalities were present in 12/14 (86%), including partial uniparental disomies for 9p (one case) and 4q (two cases) associated with homozygous mutations of JAK2 and TET2, respectively. In total, TET2 mutations were seen in 4/11 (36%) analyzed cases, thus constituting a common secondary event in idic(X)-positive malignancies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large inverted repeats within Xp11.2 are present at the breakpoints of isodicentric X chromosomes in Turner syndrome.

Turner syndrome (TS) results from whole or partial monosomy X and is mediated by haploinsufficiency of genes that normally escape X-inactivation. Although a 45,X karyotype is observed in half of all TS cases, the most frequent variant TS karyotype includes the isodicentric X chromosome alone [46,X,idic(X)(p11)] or as a mosaic [46,X,idic(X)(p11)/45,X]. Given the mechanism of idic(X)(p11) rearran...

متن کامل

Array-based comparative genomic hybridization analysis of recurrent chromosome 15q rearrangements.

Genomic rearrangements of chromosome 15q11-q13 cause diverse phenotypes including autism, Prader-Willi syndrome (PWS), and Angelman syndrome (AS). This region is subject to genomic imprinting and characterized by complex combinations of low copy repeat elements. Prader-Willi and Angelman syndrome are caused primarily by 15q11-13 deletions of paternal and maternal origin, respectively. Autism is...

متن کامل

Characterization of an autism-associated segmental maternal heterodisomy of the chromosome 15q11-13 region.

Cytogenetic abnormalities in the Prader-Willi/Angelman syndrome (PWS/AS) critical region have been described in individuals with autism. Maternal duplications and linkage disequilibrium in families with autism suggest the existence of a susceptibility locus at 15q11-q13. Here, we describe a 6-year-old girl diagnosed with autism, developmental delay, and delayed expressive and receptive language...

متن کامل

The role of the JAK2 GGCC haplotype and the TET2 gene in familial myeloproliferative neoplasms.

BACKGROUND Myeloproliferative neoplasms constitute a group of diverse chronic myeloid malignancies that share pathogenic features such as acquired mutations in the JAK2, TET2, CBL and MPL genes. There are recent reports that a JAK2 gene haplotype (GGCC or 46/1) confers susceptibility to JAK2 mutation-positive myeloproliferative neoplasms. The aim of this study was to examine the role of the JAK...

متن کامل

Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies.

Disease alleles that activate signal transduction are common in myeloid malignancies; however, there are additional unidentified mutations that contribute to myeloid transformation. Based on the recent identification of TET2 mutations, we evaluated the mutational status of TET1, TET2, and TET3 in myeloproliferative neoplasms (MPNs), chronic myelomonocytic leukemia (CMML), and acute myeloid leuk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 2010